Tissue

• Ocular Tissues
 • assess the boundary lubricating ability of lubricin at a cornea-eyelid biointerface
 • dry eye disease
 • decreased lubrication => pain and discomfort
 • no effective therapeutic treatment

OBJECTIVE

METHODS

Ocular Tissues

• Human cornea: Southern Alberta Lions Eye Bank
 • fresh, obtained within 8 hr after death
 • preserved in Optisol-GS @ 4°C, used within 2 weeks
 • age: 24-83 years old
• Human eyelids: U Calgary Body Donation Program
 • fresh, obtained within 1-2 days after death
 • used immediately, or stored in saline @ -20°C and used within 1 week

Lubricin Preparation, Purification, & Characterization (Fig. 1)

• Preparation:
 • cartilage disks from patellofemoral groove of mature bovine stifle joints
 • 6 mm diameter, ~0.3 mm thick including the articular surface
 • cultured for 15 days in Dulbecco’s modified Eagle’s medium, 0.01% BSA, 25 μg/ml ascorbic acid, 10 ng/ml recombinant TGF-β1
 • medium changed every 3 days
 • collected and stored at -20°C
• Purification:
 • spend medium fractionated by DEAE anion exchange chromatography
 • DEAE-Sepharose column
 • PRG4 rich 0.3-0.6 M NaCl eluate
 • concentrated with a 30 kDa MW cutoff filter
 • buffer exchanged into water
• Characterization:
 • SDS-PAGE Western Blot & protein stain
 • 3-8% Tris Acetate gels
 • C terminal anti-peptide antibody5: LPN
 • gel protein stain
 • BCA protein assay

RESULTS

Ocular Surface Boundary Lubrication Test

• consistent test setup achievable ➔ accurate τ & N data collected (Fig. 4)
• normal stress σ = N/(n (R_e^2 - R_i^2)) range 13.1 - 23.4 kPa (avg 19.0±1.2 kPa)

Test Samples (Fig. 2A)

• cornea with ~3mm sclera
 • eyelid: R_e = 3.2mm, R_i = 1.5mm ➔ R = 2.4mm

Test Setup (Fig. 2B)

• cornea-eyelid biointerface, BOSE ELF3200 biomechanical tester
 • rotate (ω radians) ±4 rev at linear sliding velocity: 30, 10, 1, 0.3 mm/s
 • 12 s pre-sliding duration (dwell time) between rotations
 • measure normal load N, torque τ

Data Analysis

• friction coefficients μ = (τ/ NR)
• static μ - resistance to onset of motion: peak τ
• kinetic μ - resistance to steady state motion: average steady τ
• mean ± sem
• repeated measures ANOVA, posthoc with Sidak

Figure 2. Ocular surface boundary lubrication test samples (A) and setup (B).

Test Lubricants (Fig. 5)

• lubricant bath
• sequential testing with Saline rinses in between

Test 1 (n=6)

• Saline (Sterile Plus Saline, Bausch & Lomb)
• Aquify (CIBA Vision)
• Lubricin @ 300 μg/ml in Saline (Fig. 3)

Test 2 (n=3)

• Saline
• Bovine Serum Albumin (BSA) @ 300 μg/ml in Saline

Figure 3. Lubricin test lubricant.

DISCUSSION

Conclusions

• novel ocular surface boundary lubrication test
• lubricin functions as an effective ocular surface boundary lubricant
 • specific effect at a low concentration (300 μg/ml)
 • possibly better than commercially available eye drops
 • potential new & improved dry eye biotherapeutic

Future Studies

• dose-dependent ability of lubricin6
• synergistic friction lowering effect with hyaluronan6 (e.g. Aquify)

REFERENCES

ACKNOWLEDGMENTS

Figure 4. Ocular surface boundary lubrication test representative data.

Figure 5. Effect of lubricant and sliding velocity on static (A, C) and kinetic (B, D) friction at a human cornea-eyelid biointerface. Test 1: Saline, Aquify, PRG4 @ 300 μg/ml in A, B, Test 2: Saline, BSA @ 300 μg/ml in C, D.